Computational
Blood Cell Mechanics
Chapman & Hall/CRC Mathematical and Computational Biology

About the Series

This series aims to capture new developments and summarise what is known over the entire spectrum of mathematical and computational biology and medicine. It seeks to encourage the integration of mathematical, statistical, and computational methods into biology by publishing a broad range of textbooks, reference works, and handbooks. The titles included in the series are meant to appeal to students, researchers, and professionals in the mathematical, statistical, and computational sciences and fundamental biology and bioengineering, as well as interdisciplinary researchers involved in the field. The inclusion of concrete examples and applications and programming techniques and examples is highly encouraged.

Series Editors

Xihong Lin
Mona Singh
N. F. Britton
Anna Tramontano
Maria Victoria Schneider
Nicola Mulder

Chromatin: Structure, Dynamics, Regulation
Ralf Blossey

Mathematical Models of Plant-Herbivore Interactions
Zhilan Feng, Donald DeAngelis

Computational Exome and Genome Analysis
Peter N. Robinson, Rosario Michael Piro, Marten Jager

Gene Expression Studies Using Affymetrix Microarrays
Hinrich Gohlmann, Willem Talloen

Big Data in Omics and Imaging
Association Analysis
Momiao Xiong

Introduction to Proteins
Structure, Function, and Motion, Second Edition
Amit Kessel, Nir Ben-Tal

Big Data in Omics and Imaging
Integrated Analysis and Causal Inference
Momiao Xiong

Computational Blood Cell Mechanics
Road Towards Models and Biomedical Applications
Ivan Cimrák, Iveta Jančigová

For more information about this series please visit: https://www.crcpress.com/Chapman--HallCRC-Mathematical-and-Computational-Biology/book-series/CHMTHCOMBIO
Computational Blood Cell Mechanics
Road Towards Models and Biomedical Applications

Ivan Cimrák
Iveta Jančigová
Department of Software Technologies
Faculty of Management Science and Informatics
University of Žilina
Slovakia

CRC Press
Taylor & Francis Group
Boca Raton London New York
CRC Press is an imprint of the
Taylor & Francis Group, an Informa business
A CHAPMAN & HALL BOOK
To you and all others who value
the computational modeling and its power.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xiii</td>
</tr>
<tr>
<td>Symbols and Abbreviations</td>
<td>xv</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Computational modeling as a tool for understanding</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Compass over map</td>
<td>2</td>
</tr>
<tr>
<td>1.3 How to read this book</td>
<td>4</td>
</tr>
<tr>
<td>2 Illustrative simulation example</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Why simulation before modeling?</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Basic setup</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Adding more complexity</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Overview of the simulation module in ESPResSo</td>
<td>19</td>
</tr>
<tr>
<td>2.5 A few more words about simulations</td>
<td>20</td>
</tr>
<tr>
<td>3 Cell model</td>
<td>23</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>23</td>
</tr>
<tr>
<td>3.1.1 Biological background of the model</td>
<td>25</td>
</tr>
<tr>
<td>3.1.2 Relaxed shape of the red blood cell</td>
<td>26</td>
</tr>
<tr>
<td>3.1.3 Mechanics defined by biology</td>
<td>27</td>
</tr>
<tr>
<td>3.1.4 Components of the fluid-cell model</td>
<td>29</td>
</tr>
<tr>
<td>3.1.5 Classification of elastic forces</td>
<td>31</td>
</tr>
<tr>
<td>3.2 Local membrane mechanics</td>
<td>33</td>
</tr>
<tr>
<td>3.3 Global membrane mechanics</td>
<td>40</td>
</tr>
<tr>
<td>3.4 Membrane mechanics revisited</td>
<td>43</td>
</tr>
<tr>
<td>3.4.1 How to make bending torque-free?</td>
<td>43</td>
</tr>
<tr>
<td>3.4.2 Triangle annihilation and its implications for global area force</td>
<td>45</td>
</tr>
<tr>
<td>3.4.3 Competing in-plane and not-out-of-plane moduli and implications for volume force</td>
<td>46</td>
</tr>
</tbody>
</table>
3.5 Fluid-object coupling .. 47
 3.5.1 Fluid solver ... 47
 3.5.2 Fluid-structure interaction 49
 3.5.3 Computational setup 51
 3.5.4 Identification of the friction coefficient 53
 3.5.5 Sensitivity analysis 58
 3.5.6 Flow through membrane 59
3.6 Cell-cell interaction 62
3.7 Brief overview of other approaches 68
 3.7.1 Categorisation of red cell models 68
 3.7.2 Comparison of models and solvers 70
4 Model vs. bioreality ... 77
 4.1 Is the model correct? 77
 4.1.1 Verification .. 78
 4.1.2 Validation .. 80
 4.2 What does the theory of membrane mechanics tell us? ... 86
 4.2.1 Mechanics of the continuum model for a membrane . 86
 4.2.2 Pressure in the spring network system 92
 4.2.3 Microscopic pressure around one point 94
 4.2.4 Relation between model and system parameters 95
 4.3 Calibration and validation experiments 104
 4.3.1 Stretching red blood cells 105
 4.3.2 Couette/shear flow 109
 4.3.3 Poiseuille flow and parachute shapes 113
 4.3.4 Other types of experiments in flow in confined regions 115
 4.3.5 Experimental data for elasticity of other blood cells 118
 4.4 Issues with biological data 120
 4.4.1 Limitations of single-cell calibration experiments ... 120
 4.4.2 Replicating experimental setup in simulation 121
 4.4.3 Need for image processing 121
 4.4.4 Validation of flow of many cells on a single-cell scale 122
5 Practical issues .. 125
 5.1 Introduction .. 125
 5.2 Periodicity of the simulation domain 127
 5.3 Seeding of dense suspensions 129
 5.3.1 Random seeding .. 131
 5.3.2 Cell growth .. 132
 5.3.3 Free fall ... 134
 5.4 Discretisation ... 137
 5.4.1 Triangular mesh vs. fluid lattice 137
 5.4.2 Fluid boundary discretisation 138
Contents

5.4.3 Creating triangulations of objects 141
5.5 Computational complexity and parallelisation 144

6 Applications 149

6.1 Microfluidic cell manipulation 149
6.2 Designing a simulation study 151
6.3 Periodic obstacle arrays (POAs) 152
6.4 Capture rates for rare cells in POAs 154
 6.4.1 Models for calculating capture rates 155
 6.4.2 Performing a simulation study 157
 6.4.3 Parameter ranges . 158
 6.4.4 Comparability of simulation runs - Fixed flow rate . . 159
 6.4.5 Initial conditions and randomness 159
 6.4.6 Observed characteristics 160
 6.4.7 Interpretation of results 162
6.5 Collision rates and deterministic lateral displacement in POAs 163
 6.5.1 Performing a simulation study 164
 6.5.2 Parameter ranges and observed characteristics 165
 6.5.3 Interpretation of results 168
6.6 Blood damage index . 169
6.7 Ventricular assist devices 171
6.8 Analysis of surface micro-roughness 174

7 Ideas for extension 177

7.1 Advantage of modular approaches or isolate cleverness . . 177
7.2 Rolling and adhesion of cells 177
 7.2.1 Adhesion models . 178
 7.2.2 Calibration of model parameters 181
7.3 Cell with a nucleus . 183
7.4 Solid objects . 187
7.5 Movement of cell clusters (emboli) 188

8 Dreaming up the future 191

A Force- and torque-free bending modulus 197

A.1 Four-point interaction . 197
A.2 Comparison to other approaches 205
A.3 Computationally friendly expressions 208
Contents

B Comparison of area interactions to other approaches 209
 B.1 Local area interaction 209
 B.2 Global area interaction 210

C Force- and torque-free volume modulus 211
 C.1 Global volume interaction 211
 C.2 Comparison to other approaches 213
 C.3 In-plane or out-of-plane volume forces 215
 C.4 Search for the volume energy 215

D Calculus of spring network deformations 219
 D.1 Shear modulus 219
 D.2 Area expansion modulus 221
 D.3 Comment on differences in implementations of local area forces 225

E Complete example script 227

F Simulation setup 235
 F.1 Units ... 235
 F.2 Calculation of membrane coefficients 237
 F.3 Determining friction coefficient and mesh densities 238
 F.4 Setting up interactions 238
 F.5 Fluid parameters 240

Bibliography 243

Index 263
Preface

Biology is becoming more and more of a quantitative science, some even say that it is at a stage similar to physics pre-Newton [16]. It is waiting for breakthroughs not only in terms of biological discoveries but also in terms of new methods that will catalyse them, similar to Newton’s mechanics being catalysed by the development of calculus.

At the same time, experiments using computer simulations have become very accessible and in some cases even preferable to biological experiments. The computational resources today are fairly easily available and can be used to test various hypotheses before diving into more complicated or expensive biological testing procedures.

These two trends are steadily converging and attract considerable attention in both the biomedical and the computational fields. How did we find ourselves in the middle of it?

Both of us are trained mathematicians. We have studied numerical analysis, optimisation and mathematical modeling. Our paths had briefly crossed at the Comenius University in Bratislava, Slovakia, where we both got our master’s degrees in Mathematics but then led us on to separate trails. Ivan to Ghent University, Belgium and Fachhochshule St. Poelten, Austria and Iveta to New Jersey Institute of Technology, Newark, USA. During this time, we both somehow intuitively navigated towards more applied topics and when we met again at University of Žilina it was on a project to model red blood cells in microfluidic devices.

Looking back, the beginnings of the project seem more like a random walk than a steady progress towards a good model. Two steps forward, one step back. And then another to a dead-end sidetrack. Yes, research is like that but talking together some time later we both agreed that it could have been easier. Had we known some more basics about membrane biomechanics and about building cell models, we could have saved ourselves quite a bit of time and frustration.

With that hope we are writing this book. We would like to help young researchers entering this promising field and professionals who could use blood cell models in their applied work get oriented and started. We focus on cell mechanics and specifically red blood cell mechanics, even though we briefly touch upon other types of blood cells and circulating tumor cells. Computational blood cell models are useful in many applications such as diagnostics.
of diseases using various lab-on-a-chip concepts, monitoring of response to treatment and also in primary research of blood flow and its properties.

Red blood cells perform several biological functions and their abilities directly depend on their shape and structural stiffness. The cells respond to external mechanical stimuli and interact with their surroundings by changing their shapes or mechanical properties, which may even lead to their damage under extreme conditions. Cell models have to account for complex processes that happen at varied length scales - from molecular to microscale, at which the cells live, and still conform to the macro behavior of cell flow. That is not an easy task and we would like if this book could help in tackling it.

Some things this book is not. It is not a universal book on building models in general. While certainly invaluable, that kind of book would be extremely difficult to write and quite difficult to use once one wants to build a specific model, e.g., a model of a cell. We try to point out some general principles of building good models, but more often than not, the principles we mention apply specifically to cell models. Also this book is not an exhaustive treatment of all computational cell models out there. We try to set things into context and perspective by giving the reader some background, but our main focus is to help a modeler new to the field of blood cell modeling overcome initial hurdles and distill what is essential. We do not cover biological or chemical processes inside the cell, but rather remain on the whole cell scale.

We hope that the book will help the readers see models as bridges between different levels of understanding and that it will inspire new work in the exciting and very promising field of cell modeling.

Ivan Cimrák and Iveta Jančigová
Žilina, Slovakia